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A narrow flow passing over an obstacle in a rotating channel is analysed. When the 
upstream Froude number of the flow approaches unity and the obstacle height is 
sufficiently small, stationary Kelvin waves may appear in the channel. Under these 
conditions the usual nonlinear hydraulic theory (e.g. Gill 1977) must be replaced by 
a nonlinear dispersive theory. When the flow upstream of the obstacle is subcritical, 
the nonlinear dispersive theory produces three solutions, two of which resemble the 
solutions of hydraulic theory and a third which contains cnoidal lee waves. Upstream 
influence due to the obstacle becomes a function of obstacle shape as well as height. 
The ‘controlled ’ solution is distinguished by the presence of a partial solitary wave 
in the lee of the obstacle. 

1. Introduction 
This is the second of a pair of papers dealing with topographic effects in inertial, 

rotating-channel flows. Applications to currents in oceanic straits have been described 
in the first paper (Pratt 1983a, hereinafter referred to as P l ) .  As was the case in P1, 
all flows are confined to a thin, inviscid, homogeneous layer of fluid moving beneath 
a deep upper layer of slightly lower density. The upper layer is inactive and the 
gravitational acceleration g’ of the interface is reduced in proportion to the difference 
in densities of the two layers. The channel is assumed to rotate at constant angular 
speed i2 about the vertical (z-axis) and contain vertical walls at y = & w. 

The flows considered in Pi are subject to a number of fundamental restrictions. 
The first is a ‘ long-wave ’ approximation governing the narrowness of the current. 
This approximation is formally imposed by requiring both the vertical and lateral 
(cross-channel) scales of motion D and (g’D)i/2Q to be small compared with the 
along-stream scale L. The effect is to limit wave dispersion associated with vertical 
and lateral accelerations of fluid parcels. The second restriction requires all fluid 
parcels emanating upstream to possess uniform potential vorticity. This assumption 
is deemed necessary for analytic tractibility. 

The assumption of vertical narrowness ( D / L  + O )  and of uniform potential 
vorticity will be retained in the present treatment. Under this condition the inviscid 
dimensionless equations of motion governing the steady flow in the lower layer are 

uu,+uuy-v = -h,-b,, 62(uv,+wwy)+u = -h,-b,, (uh),+(wh), = 0, 

(1.1 a ,  b ,  c )  

where the subscripts denote partial differentiation. 
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In addition, the conservation law for potential vorticity, derived from (1  .l u-c), is 

( l . ld )  

Here x and y are the along-channel and cross-channel coordinates and u(x, y) and 
v(x,y) the corresponding velocities. The thickness of the lower (active) layer is 
denoted by h(x,y)  and the elevation of the channel bottom by b(x,y). The free 
parameter 6 in ( l . l b )  is defined as the ratio of the Rossby radius of deformation 
L, = (g'D):(29)-' based on a depthscale D and reduced gravity gf to the along- 
channel scale L of flow variation. Other scaling of variables is discussed in P1: briefly 
put, the Rossby number ( =  downstream velocity scale/QL) is taken as unity, and 
the channel width 2w is equated with the Rossby radius L,. 

The boundary conditions on the rigid channel walls are 

v(x, lL- w) = 0. (1.2) 

The vertical component of the long-wave approximation (i.e. D/L -+ 0) is already 
contained in (1  . l )  through the hydrostatic law for pressure and the independence of 
the horizontal velocities u and v upon elevation z. The horizontal component of the 
long-wave approximation can be made by taking the limit S = L,/L+O. For all 
oceanic currents of deformation scale width, the depthscale is much less than the 
width. Lateral dispersion thus has much more room to act than does vertical 
dispersion. This feature has been acknowledged here by taking the limit D/L-+O 
before any limit involving 6 is made. 

Equation (1.1 d) implies that the potential vorticity 

(1 - uy + 62v,)/h = (h (1.3) 

is conserved along streamlines. As in P1, it will be assumed that (h is a positive 
constant. 

In P1 it  is required that, S = 0, so that lateral accelerations of fluid particles become 
unimportant to the cross-channel momentum balance (1 .1  6 ) .  The flows that result 
are dominated by a balance between nonlinear advection along the channel and 
gravitational effects induced by topography. The purpose of the present paper is to 
explore the modification of this nonlinear balance by lateral dispersive effects which 
are allowed to arise when the restriction 6 = 0 is eased. If 6 is allowed to become O( l),  
however, (1 .1  u-d) become difficult to solve analytically and a numerical solution is 
probably necessary. Although numerical solutions will be presented in a future paper, 
it seems desirable to first build one's intuition by considering a problem that contains 
elements of nonlinear hydraulics and lateral wave dispersion, yet is analytically 
tractable. Such a problem can be constructed by considering flows for which S is small 
but finite and that are disturbed by only small along-channel variations in topography. 
When such a flow nears the critical speed (at which Kelvin waves become stationary) 
a delicate balance is achieved between nonlinear effects induced by topography and 
lateral dispersion associated with cross-channel variations in the flow itself. 

Owing to the assumed smallness of the parameter 6 and its form in (1.1 ), the lower 
layer thickness, velocity and topographic elevation are written as 

h(x, y) = h(') 4- S2h(') + #h(') + . . . , u(z,  y) = U(') + 8%") + 8%(') + . . . , 
b(x) = b(') 4- c%(') + 62b(2) + . . . . 

(1.4a, b )  

(I&, d )  V(X, y) = do) + SZw(') + 6*d2) + . . . , 
(For simplicity, the bottom topography has been allowed to vary only with x.) 
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2. The lowest-order dynamics : rotating hydraulics 

in P, are 
If (1.4u-d) are substituted into ( l . la ,  b) ,  (1.2) and (1.3), the results, to lowest order 

( 2 . 1 ~ )  

(2.1 b, c ,  d) 

The horizontal velocities can be described as 'semigeostrophic', in view of (2.1 a, b).  
An equation for the cross-channel structure of h(O) can be obtained by combining 

(2.1 b) and ( 2 . 1 ~ ) .  The result can be written as 

u(O)ug) + ~ ( 0 )  UY ( 0 )  - ~ ( 0 )  = - h(O) 5 - b(0) X )  

~ ( 0 )  = -h(O) 1 -u(O) = h(O) v(O)(z > -  +w) = 0. Y '  Y 

(2.2) h(O) - $h(O) = - 1 ,  
YY 

The lowest-order depth and velocity are therefore given by 

Following the procedure used in P1, i t  is helpful to define the new independent 

( 2 . 4 ~ )  
variablest 

(2.4b) 

( 2 . 4 ~ )  

(2.4d) 

go) = +[h(O)(z, w) + h(O)(z, - w)] = $-I + B(O), 

L ( 0 )  = &[h(O)(z, w) - h(O)(x, - w ) ]  = A @ ) ,  

d o )  = +[u(O)(z,w)+u(O)(z, -w)] = -$ 'FA(O) ,  

&@) = &[u(O)(z,w)-u(O)(x, -w)] = -$4TB(O), 

where T = tanh ($4~). (2.5) 
From (2.4u-d) i t  follows that 

(2.6a, b) 

The lowest-order flow rate &(O) through the channel can be related to  f l ( O )  and L(O) 

u(o) - = - $4 T-1 L ( O ) ,  &(O) = $@($-' - h'0').  

by multiplying (2.1 b) by h(O) and integrating across the channel. The result is 

From this point, discussion will be restricted to flows with positive flow rates: 

Q ( O )  > 0. (2.8) 

Furthermore, the thickness of the lower layer is assumed to remain finite a t  all points 
within the channel, so that 

L(0) > 0. (2.9) 

It follows from (2.7) and (2.8) that 
L(0)  < 0. (2.10) 

(It is possible for the lower layer to separate from the wall a t  y = w, in which case 
the layer thickness h(O)(z, w) = L(O)(x) + L(O)(z) vanishes. Gill (1977) has shown that the 
finiteness of h(O)(x, w), 

is a necessary and sufficient condition for the finiteness of h(O)(z, y).) 

L@f(x>+ft(O)(x) > 0, (2.11) 

t The notation A( ) in P1 has been replaced here by (*) .  
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The along-channel behaviour of h ( O ) ,  do) and & ( O )  can be ascertained through 
the use of (2.1 a )  and the boundary condition (2.1 d).  The result (see Gill 1977 or P1) 
is the aforementioned hydraulic theory, which determines Go), A(0) etc. as functions 
of the topographic elevation b(O)(x). The solutions behave in a similar way to those 
of classical hydraulic theory (Chow 1959). A generalized Froude number 

(2.12) 

can be defined such that C(O) is the speed of a small-amplitude Kelvin wave relative 
to the advective speed do) of the current against which it propagates (cf. equation 
(3.19) of Pl). The steady current is called subcritical, supercritical or critical for 
Fd < 1, Fd > 1 or Fd = 1 respectively, the latter case occurring when the absolute 
speed do) - C(O) of the wave is zero. 

At this point, one avenue of investigation would be to study the small departures 
of the above hydraulic solutions due to dispersion a t  higher orders of S2. Aside from 
being extremely difficult, this approach doesn't really satisfy our desire to give 
dispersion an important role. Therefore variations in the lowest-order bottom 
topography are required to vanish, b(O) = 0, causing hxo), A(o),  do) and & ( O )  to become 
x-independent and the cross-channel velocity do)  to vanish. 

3. The 0(a2) dynamics: linear long-wave theory 
To O ( P )  (l.la,b), (1.2) and (1.3) are 

u(o )u2 )  + v(l) UY (0) - v(l) = - h(l) x - b(l) 5 7  (3.1 a )  

u(l) = -q/?), -u(l) ll = qw), v y z ,  *w) = 0. (3.1 b ,  c ,  d )  

(The x-independence of the basic (lowest-order) fields has been considered in deriving 
(3.la-d).) According to (3.1 b ) ,  cross-stream accelerations do not come into play, and 
the horizontal velocities remain semigeostrophic. 

Proceeding as in $ 2 ,  (3.1 b )  and (3.1 c) can be combined and the following expressions 
for u(l) and h(l) found: 

sinh ($4 y)  
sinh (4; w) 

cosh ($4 y)  
cosh ($4 w) ' 

h(l)(x, y) = A'l)(x) + B(')(x) 

u(I ) (x ,  y) = -& A'l'(x) 'Osh ($4Y)+B(1)(x) [ sinh(&y) 

(3.2~) 

(3.2b) 

Prom these it can be shown that 

where (-) and ( A )  again denote sums and differences of values on the channel 
walls. 

G1) and h(l) can be determined using the 
momentum equation (3.1 a) .  If this equation is evaluated a t  each wall, where d l )  = 0, 
and the two results summed, the following equation is obtained: 

The along-channel structure of dl), 

(3.4a) 
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Similarly, the difference of the momentum equations along each wall is 

(3.4b) 

If (2.6) and (3.3) are now used to eliminate do), and &(l) in (3.4), the 
following pair of equations for the unknowns and &(l) results: 

(3.5a) 

(3.5b) 

Eliminating L(l) from the above expressions, one finds 

dh(l) h(O'T2q5 db(l)/dx 
(3.6) -=- 

dx &(0)2-q5--1pL(0)[1 - T 2 ( 1 + 3 0 ) ) ]  

For nonzero values of denominator in (3.6), A(') varies linearly with the topographic 
elevation b(l). The solution is of long-wave nature and is identical in form with the 
solution that would be obtained by linearizing hydraulic theory for infinitesimal 
topographic variations. Of more interest is the case when the denominator vanishes: 

11, (3.7) 

which, according to (2.12), is the critical condition for a Kelvin wave propagating 
against the basic flow. There are now two possibilities. The first occurs when the 
bottom elevation b(') is non-constant. In this case dh(l)/dx becomes unbounded and 
the expansion scheme (1.4) is invalidated. This situation can be remedied, however, 
by expanding the thickness and velocity fields in powers of 6, rather than a2, but 
leaving the topographic expansion in powers of S2 intact. The new expansion is based 
on the expectation that the 0(J2) topography will produce O(6) perturbations to the 
basic flow. This expectation is correct, and a nonlinear equation governing the O(6) 
fields can be found. However, this equation is essentially no different from the 
equation of hydraulics; the O(6) fields have long-wave character and are therefore 
of no further interest here. The other possibility is that no topographic variations 
exist (db(l)/dx = 0) so that d&(')/dx is indeterminate in (3.6). In  this case the 0(62) 
dynamics are degenerate and the only information given by (3.5) is the following 
relationship between &(l) and h?') : 

(3.8) 

obtained by integrating (3.5b). Here Q(l) is an integration constant determining a 
small correction to the basic flow rate. 

It is now formally assumed that the basic flow is critical and that b(l)(x) = 0. The 
O ( P )  perturbations are due to stationary Kelvin waves of yet-unknown along-channel 
structure. To determine this structure it is necessary to proceed to the next order. 

$5'-2h(O)' = L(O)[1 - p ( 1  -L(O) 

L(O)&(l) = - h(O)L(l) + & ( l ) J l ( O ) ,  

4. The O(S4) dynamics 
To O(s4) ( l . l a , b ) ,  (1.2) and (1.3) are 

u(O)u($ +v(2) UY (0) -v(2) + h(2) = -b(2) x - u (1) u, (1) - 2) (1) uy (11, (4.1 a )  

U ( O ) D ~ )  + u") = - h(2) Y '  ~2) -UP) = q5h(2), d 2 ) ( x ,  & W )  = 0. (4.1 b, C, d )  

Note that the along-channel velocity d2) is no longer geostrophic. 
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Combining (4.1 b )  and (4.1 c) gives the following equation for h(2) : 

(4.2) hci - $h(2) = - ( ~ ( 0 ) v g ) ) ~  - vg), 

where v(l) can be expressed in terms of u(l) and h(') (using (2.1 c) and (3.1 a ) )  as 

v(1) = ($h(O)-') [ U ( o ) U g )  + hp]. (4.3) 

If (3.2), (3.3) and (3.8) are used to substitute for h(l) and u(l) in (4.3), the cross-channel 
velocity can be written as 

At the channel walls u(O)( k w) = id0) k so that the bracketed terms in (4.4) vanish 
a t  y = & w. The boundary conditionsv(l)(x, w) = v(')(x, .- w) = 0 are therefore satisfied. 
Also note that the finiteness of v(l) is based entirely on the y-structure of the basic 
flow. If do) becomes y-independent then U(O) = do), = 0, and dl) vanishes in (4.4). 

Since the expression in braces in (4.4) is solely a function of y, the cross-channel 
velocity may be written as 

dk(l) 
dx 

v(1) = V(')(y)---. 

Equation (4.2) can now be written as 

(4.5) 

When the expressions for V(l) and u(O) are substituted into (4.6), the coefficient of 
dz&(l)/dx2 becomes a complicated combination of ratios of hyperbolic functions. 
Determination of a closed-form particular solution is difficult. Instead, we simply use 
the fact that  the right-hand side of (4.6) is a separable function of y and x, and write 
the particular solution symbolically as H@)(y )  d2h(l)/dz2. Thus 

From (4.1 b )  the corresponding velocity is 

where Ut2)(y) = - cW2)/dy - u ( O )  V(l). The functions H(2)  and U(*) depend on the O(0) 
flow and will not be evaluated explicitly. 

From (4.7a, b )  it follows that 

(4.8a, 6 )  
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where ( ^ )  and (-) take on the usual meanings. From these, it follows that 

- d2$,(1) 
?L(2) = - $4 T-1 h(2) + (g(2) + $4 T-1 A(2) (4.9a) 

(4.9b) 

If ( 4 . 1 ~ )  is now written on either wall and the results summed and differenced in 
the usual way, the following equations for &(2) and a2) are obtained: 

1 - 1  

d2&(1) 
G(2) = - $4 Th’2’ + ( @ 2 )  + $4 T j p )  - 

dx2 ’ 

Eliminating from the above expressions gives 

where 

D, = $-tT-1[&(O)+T4h(0)($--1-L(0(0))](0(2) +$i Tn(2)) 

- $4 TW (4-1 - 120)) ( + $i T-~A‘z)) ,  ( 4 . 1 2 ~ )  

D, =-(A (0 )  + T4@0)2~(0)-’ )> (4.12b) 

D3 = $(3@0) + T46(00&(0)-2), (4.12 c) 

D, = 4-1 p @ O ) .  (4.12d) 

Note that the coefficients D,, D, and D, are required by (2.9) and (2.10) to be positive. 
The coefficient D, is related through f i ( O ) ,  h(O), 0(2), n2), E(,) and I?(,) to the basic 
flow. Should the cross-channel velocity vanish over the entire channel, the functions 
UZ)(y) and H(2)(y) in (4.7) will also vanish, implying that D, = 0. Thus, a finite 
cross-channel velocity dl) is required to maintain finite D,. We have already seen 
that non-zero v(l) is a consequence of the y-structure of the basic flow. 

Equation (4.11) can be compared with its O(S2) counterpart (3.6). I n  both cases 
the denominator of the right-hand side is zero, as required by the criticality of the 
basic flow. At O(S2), boundedness of the solution was achieved by forcing topographic 
variations to vanish. In  equation (4.1 1 ), however, topographic variations may remain 
and boundedness may be achieved through the dynamical requirement 

(4.13) 
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which can be simplified to 

(4.14) 

by integrating once with respect to x and applying the new scaled variables 

(The + sign is chosen for D, > 0 and the - sign for D, < 0.) It will now be assumed 
that D, > 0, so that the + sign is appropriate. As will be shown, this assumption 
leads to no loss in generality.) 

Since (4.13) is a momentum equation, its integral (4.14) is an energy equation with 
the integration constant @l) representing the Bernoulli constant. 

5. Steady solutions 
A homogeneous form of (4.14) has been found by Benjamin & Lighthill (1954) to 

describe stationary gravity waves on a shallow irrotational flow near the critical 
speed. Their equation can also be derived from the time-dependent Kortweg-de Vries 
equation (Whitham 1974) for shallow water waves propagating on a basic state of 
rest, the steady equation resulting from a Galilean transformation which places an 
observer in a frame of reference in which disturbances are stationary. The only 
addition to the equation of Benjamin & Lighthill is the inhomogeneous term 6([) in 
(4.14). It is important to note, however, that (4.14) is not equivalent to the equation 
derived by following Kelvin waves propagating on a basic state of rest. Such a state 
is independent of y (by (2.1 b, c)) ,  so that the Kelvin waves possess zero dl), forcing 
D, to be identically zero and thereby eliminating the dispersive term from (4.13). 

To study the effect of topography in (4.14) it is convenient to first rewrite the latter 
as the non-autonomous system 

Recall that g ( [ )  is proportional to the layer-thickness difference '(l) across the 
channel. This difference geostrophically determines both the wall-averaged velocity 
U ( l )  (through ( 3 . 3 ~ ) )  and the wall-averaged depth &(l) (through (3.8)). The new 
variable f = dg/d[ is thus proportional to the along-channel gradient of these two 
quantities. 

Suppose first that 6 is locally constant, so that the channel bottom is locally flat. 
Uniform flows (for which dg/dE and df/d[ are identically zero) occur at  the stationary 
points of (5.1) and (5.2): 

f ,  = 0, (5.3) 

gs+ = -$&"'* [(~&"')'+g#''"-s]i. (5.4) 

Two real, distinct values gs+ and gs- will exist, provided that 

6 < ( y p ) 2  + a(,). (5.5)  

When 
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these values coalesce and gs+ and gs- take on the single value gsc given by 

gsc = -$p. (5.7) 
The uniform (&independent) solutions described by (5.3) and (5.4) can be viewed 

as small corrections to the basic uniform flow. Appendix A contains an evaluation 
of the Froude number of the corrected flow as defined by (2.12). In  particular, it is 
shown that the &independent flows corresponding to g = gs+ and g = gs- (as occur 
when (5.5) is satisfied) are respectively slightly subcritical and slightly supercritical. 
When (5.6) is satisfied and gs+= gs-, the corrected flow is critical. The uniform 
solutions at O ( P )  thus arise as bifurcations from a critical state which occurs when 

Some caution should be used when applying the terms subcritical and supercritical 
to the corrected flow. Here we use the terms to indicate the value (relative to unity) 
of the Froude number that would be measured in a laboratory situation, drawing no 
inference concerning the ability of disturbances to propagate upstream against the 
flow or remain stationary. In  fact, dispersion will allow for stationary waves over a 
continuous range of Froude numbers near unity. 

The general solutions to (5.1) and (6.2) can be represented as phase-plane 
trajectories, for which f(5) is plotted as a function of g(E),  with 6 a parameter 
determining position along a given trajectory. Since the topography 6 is itself a 
function o f t ,  the trajectories change shape as the topography varies. Consider first 
the special case of a flat bottom with zero elevation. 6(6) = 0, as shown in figure 1 (a ) .  
(The special parameter settings = 0, &(I) = 1 have been used.) By (5.3) and (5.4), 
uniform flows exist a t  ( g , f )  = (0,O) and ( -  1 , O ) .  In the first case the flow is slightly 
subcritical. This solution is represented in figure 1 (a) by a stable centre point 
surrounded by closed trajectories. The closed (periodic) solutions consist of cnoidal 
Kelvin waves with dispersion properties similar to the cnoidal waves of free-surface 
flow (Whitham 1974). In the small-amplitude limit these waves have length 
A = 2 h ~ [ ( + Q ( ~ ) ) ~  - 6)-t, as shown in Appendix B. In  the second case the uniform 
flow is slightly supercritical and is represented by a saddle point bordered by solutions 
which grow without bound. The closed trajectory that passes through the supercritical 
flow represents a solitary Kelvin wave, the limit of a cnoidal Kelvin wave as the 
wavelength goes to infinity. 

The effect of topography on the above solutions can be seen in figure 1 ( b ) ,  where 
the phase plane has been plotted for 6 = 0.16. The trajectories represent solutions 
valid over a flak bottom of slightly higher elevation than that of figure 1 (a). They 
also give the instantaneous trajectories at position to for a solution over an uneven 
bottom with elevation 6(to) = 0.16. Note that the general effect of the increase in 
bottom elevation is to draw the uniform-flow solutions together, causing the region 
of bounded solutions to shrink. 

g = (lQ‘f’)2 + @I).  
2 

We now construct some sample solutions for the following topography: 

i.e. the bottom is flat except for a single, parabolic obstacle of height b,,, and 
half-width 1. Away from the obstacle, the solution trajectories of figure 1 (a) are valid. 
The flow upstream of the obstacle can be one of three kinds. 

Case 1: uniform and slightly subcritical upstream $ow 
Here the upstream condition is g = f = 0, and the flow remains uniform until the 
obstacle is encountered. As the fluid moves up the face of the obstacle, 6 inceases and 



104 L .  J .  Pratt 
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b m  

FIGURE 1. Phase planes for (5.1) and (5.2) with Q(l) = 1, @(l) = 0 and constant bottom elevation 
6. The solid lines represent solution trajectories with arrows indicating the direction of increasing 
6. The dashed lines represent various possible excursions from shown trajectories when 6 is allowed 
to vary with 5 as described in the text. (a) 6 = 0; (b)  6 = 0.16. 

the equilibrium (centre) point moves to the left, away from the origin, as in figure 
1 ( b ) .  The initial tendency of the actual solution curve, however, is to remain at  the 
origin until the closed, cnoidal wave trajectories begin to be swept by it. The solution 
curve then takes on a phase velocity tangent to the passing trajectories. After the 
crest of the obstacle is passed, 6 decreases and the phase trajectories return to their 
original shapes. However, the solution curve may not return to the origin, and the 
downstream solution trajectory may be different from the upstream trajectory. Four 
different examples of the path that the solution curve might take over the obstacle 
are indicated by the dashed curves in figure 1 (a) .  The first (labelled C,) places the 
downstream flow back at the origin, so that the upstream and downstream states 
are identical. The second (labelled C,) connects the upstream solution to a cnoidal-wave 
trajectory, so that the obstacle produces lee waves. The third (labelled C,) places the 
downstream flow on the solitary-wave trajectory, so that far downstream the flow 
becomes uniform and slightly supercritical. The final possibility (labelled C,) places 
the solution onto an unbounded trajectory. 
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Case 2 : periodic upstream flow 

The upstream state could also consist of a uniform train of cnoidal waves. I n  this 
case the effect of the obstacle is similar to that described above. More specifically, 
three bounded downstream states are possible : a uniform, slightly subcritical flow ; 
a periodic flow ; and a partial solitary wave. 

Case 3 : uniform supercritical $ow upstream 

Suppose first that  the upstream state lies a t  the saddle point (0, - 1). The flow is then 
slightly supercritical and uniform when the fluid first contacts the obstacle. As the 
bottom elevation increases, the saddle point is moved to the right but the solution 
curve is drawn down and to the left (curve C ,  in figure 1 ( a ) )  and continues to move 
toward increasingly negative values of g ( l )  and f (l) .  After the obstacle is passed the 
solution curve is left on an unbounded trajectory. 

To achieve a bounded solution, the upstream state must therefore lie not a t  the 
saddle point but elsewuere on the solitary-wave trajectory. In  this case the upstream 
flow is uniform and slightly supercritical as &+- CO, but the crest of the solitary wave 
has started to form before the obstacle is encountered. As in the two previous cases, 
the downstream state can be one of three possible configurations, provided that the 
solution remains bounded. 

A more thorough discussion of solutions with slightly supercritical upstream flow 
has been made by Kyner (1962), who derived an equation of the form (4.13) in 
connection with a potential flow. Here we concentrate on the situation in which the 
upstream flow is slightly subcritical, which would seem to be the more geophysically 
relevant case. 

Figure 2 contains some sample solutions to (5.1) and (5.2) computed using a 
predictor-correlator method. The first three (figures 2 (a)-(c))  are computed for 
various values of Q(l) using 4?(l) = 0 and the topography (5.8). The upstream values 
g = 0, f = 0 are chosen so that the upstream flow is uniform and slightly subcritical. 
The solution of figure 2 ( a )  (&(') = 3.0) corresponds roughly to the phase trajectory 
of C,  of figure l(a),  with the fluid dipping over the obstacle and returning to its 
upstream depth. That of figure 2(b) (@) = 0.86) corresponds to the trajectory G,, 
with cnoidal Kelvin waves appearing in the lee of the obstacle. Finally, the solution 
of figure 2 (c )  (Q") = 0.8097) corresponds to  trajectory C,  with a partial solitary wave 
asymptoting to a uniform, slightly supercritical flow in the lee of the obstacle. 

The remainder of figure 2 contains solutions with other upstream states or obstacle 
shapes. Figure 2 ( d )  shows a flow that is periodic upstream of the obstacle and contains 
a partial solitary wave downstream. The flow in figure 2 ( e )  contains the same 
upstream state as that in figure 2 ( c ) ,  but the obstacle has a cosine shape : 

(5.9) 

The new shape causes lee waves to form, whereas the former shape leads to a partial 
solitary wave in the lee. Note the obstacle height b,,, is the same in either case. 

It has been assumed thus far that  the coefficient D, > 0 in the transformation 
(4.15). If D, < 0, (5.1) and (5.2) become 
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FIQURE 2. Numerical solutions to (5.1) and (5.2) for various upstream states and topography. In 
all cases the perturbation Bernoulli constant 9i?(l) = 0, and the obstacles have height 6,,, = 0.15 
and half-width I = 6.5. In  (a)-(d) the obstacle shape is parabolic and is given by (5.8), while in ( e )  
the shape is of a cosine and is given by (5.9). (a) &(l) = 3.0, g = f =  0 upstream; (b )  &(l) = 0.86, 
g =f = 0 upstream; (c) Q(l) = 0.8097, g = f  = 0 upstream; (d )  &(l) = 0.7635, f = 0 and g = -0.3 
upstream at x = 0; ( e )  Q(l) = 0.8097, f = g = 0 upstream. (&(’) is proportional to the perturbation 
flow rate.) 

The phase plane for the above equations can be obtained simply by displacing the 
phase plane for (5.1) and (5.2) an amount Q(l) in the positive g-direction. Furthermore, 
it is a simple matter to show that the right- and left-hand stationary points represent 
slightly subcritical and slightly supercritical flows in the displaced phase plane. The 
general along-channel behaviour of solutions for D, < 0 is thus identical with the case 
D,  > 0. 

If D, = 0 the dispersive term in (4.13) vanishes and solutions regain their long-wave 
behaviour in the z-direction. However, the author has been unable to contrive a basic 
flow for which D, = 0 other than the trivial case I3O) = 4-l and @O) = 0. The latter 
corresponds to a basic state of rest. 

6. Upstream influence 
The along-channel structure of several of the solutions to (5.1) and (5.2) is 

reminiscent of the solutions of classical hydraulics (Gill 1977). In figure 2 ( a ) ,  for 
example, the solution is nearly uniform and subcritical on either side of the obstacle, 
the only substantial departure from the uniform state occurring over the obstacle. This 
is also a property of the subcritical solution of hydraulics. The solution of figure 2 ( c )  
resembles the ‘controlled ’ solution of hydraulics, in which a transition from subcritical 
to supercritical conditions occurs as fluid spills over the obstacle. However, the 
wavelike behaviour of the solutions in figures 2 (b ,  d,  e )  is not found in classical 
hydraulics. 
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A well-known property of the ‘controlled’ solution of hydraulics is that the 
upstream state cannot be determined independently of the obstacle height. For 
example, a controlled, shallow, non-rotating free-surface flow with upstream energy 
per unit mass E and flow rate q is constrained by the relationship 

bmax = E - ~ q ‘ ,  (6.1) 

where b,,, is the height of the crest of the obstacle above the flat bottom upstream 
(Chow 1959). (The corresponding relationship for the rotating case is given by 
equations (4.2) and (4.3) in Pl . )  If (6.1) is initially satisfied and the obstacle height 
b,,, is increased by a small amount to a new fixed value, E and q adjust to  new values 
such that (6.1) is again satisfied. This adjustment is effected by a wave which is 
generated by the obstacle and moves upstream, bringing E and q back in line with 
(6.1). The new steady state is therefore controlled. 

The time-dependent adjustment from one controlled state to another describes the 
process of upstream injuence,  first noted by Long (1954). Obstacles exercise upstream 
influence by sending signals upstream. These signals consist of gravity waves in the 
non-rotating case and Kelvin waves (see P i )  when rotation exists. The communication 
is governed by a minimal principle which is implied by (6.1) (or the appropriate form 
thereof.) In  the non-rotating case the minimal principle requires that the change of 
E -@ d in response to an increase in b,,, be the smallest amount necessary for a steady 
well-behaved solution to be possible. Now it is a fact that such solutions (controlled or 
otherwise) are not possible for b,,, > E - @ 4, as the free-surface slope would become 
infinite in selected places (Gill 1977). Thus the minimum change in E - @ $  is the 
amount required to satisfy (6.1). 

If b,,, < E-&!$ the steady solution is well-behaved but non-controlled. In  this 
case, sufficiently small increases in b,,, cause no change in status, and the minimum 
required change in E-$g@ is zero. The final upstream state is thus identical with 
the initial upstream state and no upstream influence occurs. 

It may be asked whether upstream influence is also a property of solutions to (5.1) 
and (5.2). The question may be rephrased by asking whether an infinitesimal change 
in the heights (or shapes) or the obstacles in figure 2 will force a permanent change 
in the upstream conditions of any of the solutions. Suppose first that for all values 
- co < 6 < co the solution curve lies within the region of phase space enclosed by 
the solitary-wave trajectory (see figure 1) .  Then an infinitesimal change in bottom 
topography will not affect the boundedness of the solution; such a solution may be 
found without altering the upstream flow. If, on the other hand, the solution 
trajectory lies along or touches the solitary-wave trajectory for any E ,  as in figures 
2(c,d), the boundedness of the solution is in jeopardy. Should the change in 
topography force the solution onto an outside trajectory, the downstream flow will 
become unbounded, and new upstream conditions (&(’) and AW) are required. An 
increase in (+&(1))2+2i91) would enlarge the region of bounded solutions by further 
separating the equilibrium points (see (5.4)). This influence over the upstream state 
is governed by the time-dependent non-linear dispersive equation in which (5.1) is 
embedded. If the process obeys the same minimal principles that govern non- 
dispersive adjustments, the solitary wave will be a common downstream state. This 
is an intuitive suggestion which is based on the fact that the solitary wave, of all 
bounded solutions, represents the ‘outermost ’. Therefore the minimal amount of 
change in (+&(1))2+a(1) necessary to establish a bounded solution should be the 
amount needed to make the downstream solution curve coincide with the solitary 
wave trajectory. 
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It should be noted that the coincidence of the solution trajectory with the 
solitary-wave trajectory is not a suficient condition for upstream influence. This can 
be seen through comparison of the solution of figure 2(c )  with that of figure 2 ( e ) .  
Although the downstream part of the solution of figure 2 ( c )  consists of a partial 
solitary wave, the change in obstacle shape necessitates no new upstream state. (Other 
obstacle shapes do, however, lead to an unbounded solution.) 

Although the above conclusions are based on intuition rather than formal proof, 
there is some indirect experimental evidence in support. Pratt  (1984) has carried out 
a series of experiments with non-rotating, nearly critical, free-surface flow over 
multiple obstacles; a system also governed by equations of the forms (5.1) and (5.2). 
For non-controlling obstacles, the downstream flow was found to consist of a train 
of cnoidal lee waves while the flow downstream of a controlling obstacle resembled 
a partial solitary wave. 

7. Discussion 
The presence of dispersive effects leads to several striking modifications of the 

rotating-hydraulics solutions described by Gill (1977) and in P i .  The first is the 
possibility of oscillatory behaviour in the along-channel direction as a result of 
stationary cnoidal or solitary Kelvin waves. The second is the dependence of the 
upstream and/or downstream flow on obstacle shape as well as height (see figures 
2 (c, e ) ) .  

Several questions of great interest have arisen during the course of the analysis. 
First, how is upstream influence exercised by the obstacle! What is the messenger 
that conveys information regarding the obstacle shape and height to the upstream 
flow ? Secondly, does a minimal principle govern the adjustment process by which 
the obstacle communicates with the upstream flow, as occurs in hydraulic theory? 
Finally, what determines whether the upstream flow (after adjustment) is uniform 
or oscillatory! Answers to these questions can be obtained by integrating the 
time-dependent equation in which (5.1) and (5.2) are imbedded, an exercise left for 
a future paper. 

In  the derivation of (5.1) and (5.2) it  has been assumed that the thickness of the 
lower layer remains finite at all points. Gill (1977) has shown that this assumption 
can be violated when the channel width is greater than a certain critical value. This 
critical value is determined by (2.11). Under these conditions the active layer 
separates from the wall at y = + w and the edge of the current forms a free streamline. 
Since the wall a t  y = + w is no longer available to support Kelvin waves, it  is unclear 
that equations of the form (5.1) and (5 .2)  continue to hold. 

This work was supported by the Office of Naval Research under Contract 
N00014-81-C-0062. The author wishes to thank Prof. M. Stern for a useful suggestion 
concerning the basic problem and Mrs L. Allen for help in preparing the manuscript. 
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Appendix A 
The uniform (in LJ solutions described by (5.3) and (5.4) can be viewed as small 

corrections to the basic uniform flow. Consider the Froude number of the corrected 
flow, as obtained by replacing h ( O )  and h 7 O )  by h(0)+821W and k(0)+S2h7') in (2.12). 
If this substitution is carried out and the critical condition (3.7) applied, the result 
is 

If (3.8) is used to write h?l) in terms of h(l), the above expression can be written as 

Fd = 1 ++62a3hf0f(3+a2T4) [h(l)-+&('fa-l(l +a2T4) ( ~ + c x ~ T ~ ) - ~ ] + O ( S ~ ) ,  ( A  1) 

where 01 = g o ) & ( o ) - '  < 0. 

Suppose first that  (5.6) holds, so that g,+ = 9,- = gsc. The corresponding value of 
denoted by hi:). can be computed from (4.15) as 

hi',' = g w a - l  (1  +azT4) (3+01~T~)- l .  

The bracketed term in (A 1) thus vanishes and the uniform flow remains critical, 
Fd = 1 ,  through 0(d2). If, on the other hand, (5.5) holds, two distinct values gs+ and 
gs- exist such that 

ss+ > ssc,  ss- < SSC. 
From (4.15) i t  follows that the corresponding values of h(l), denoted by 
are characterized by 

and @, 
+pa- 1 ( 1  + a2T4) 

3 + a2T4 
hp! > 

and 

From (A 1) it follows that Fd < 1 in the first case, while Fd > 1 in the second. I n  
summary, the two uniform flows described by (5.3) and (5.4) are slightly subcritical 
and slightly supercritical when the elevation 6 of the flat bottom is less than 
(!j&(1))2 + B(l). These two solutions arise as a bifurction from the uniform critical flow 
which occurs when 6 = (@1))2 + B(Q. 

Appendix B 

by rewriting (4.14) as 
An appropriate expression for the wavelengths of the cnoidal waves can be derived 

Attention is now restricted t o  solutions near the subcritical equilibrium point gs+ by 
writingg = gs+ + @anddemanding that - 61:. Equation 
(4.14) can now be written as 

-4 gs+ - g s -  = 2[(9$1))2 + 
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Thus plane waves of small amplitude and of the form = sin (2nlJh) have wavelength 

h = & n [ ( $ p ) 2  + gg'(1) -GI--:. 

This wavelength grows as the basic flow approaches criticality (i.e. as 
6, ($$1))2 + If the wave amplitude becomes finitte, the wavelength will become 
amplitude-dependent . 
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